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We experimentally study the effects of correlations in the propagation of ultrasonic waves in water from a
multielement source to a multielement detector through a strongly scattering system of randomly placed
vertical rods. Due to the strong scattering, the wave transport in the sample is in the diffusive regime. The
correlation between the waves is induced when the distance between transducer elements is within the coher-
ence region of the scattered sound. We measure the multichannel transfer matrix H, each element of which
represents the signal strength between the m individual transmitters and n receivers. The observed eigenvalue
distribution of the matrix HH† clearly shows the effect of correlations between channels and can be interpreted
using random matrix theory. These results are of practical importance in many areas, e.g., for evaluating the
information transfer capacity of such a complex scattering system.
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Multiple scattering of waves in random media has been
studied extensively in condensed matter and also with clas-
sical waves in optics and acoustics.1 One of the important
results is that field �or intensity� correlations in time, fre-
quency, or space can persist even after many scattering
events. One example is the universal conductance fluctua-
tions that were studied in detail in small disordered metal
and semiconductor samples. With the use of theoretical
methods borrowed from quantum field theory, long range
correlations in multiple scattered light have also been pre-
dicted and found experimentally, in particular, for a single
input channel �see, e.g., Ref. 2�. Extension of the detailed
scattering approach to multiple inputs and/or output channels
and the correlations between them is in general difficult. In a
scattering medium with n input and m output channels, an
alternative approach is to model directly the statistical prop-
erties of the n�m transfer matrix H with the use of random
matrix theory �RMT�. The eigenvalue distribution of HH† is
essential in, e.g., the transport properties of waves in the
system, but also in the analysis of transfer of information as
used in wireless communication. The eigenvalue distribution
is highly dependent on correlations between the matrix en-
tries, the topic of study here. In many applications RMT
enables a systematic study of the influence of fluctuations in
combination with imposed symmetries and correlations with-
out the need for a detailed model for the system. Some of the
early results in RMT were developed by Wigner3 to charac-
terize eigenvalue distributions of a Hamiltonian in quantum
mechanics.4 Even before the use in physics, random matrices
were exploited in multivariate mathematical statistics as,
e.g., developed by Wishart.5 General results were derived for
the eigenvalue distribution in rectangular random matrices
by Marčenko and Pastur6 in the 1960s.

Current developments in physics focus, e.g., on the eigen-
value distributions in quantum dots where the Hermitian
character is disturbed by dissipative processes7 and exploit
the similarity between the propagation of microwaves in a
closed environment described by the Maxwell equations and

quantum mechanics described by the Schrödinger equation
�see Ref. 8 for an overview�. In recent years RMT has be-
come a powerful tool to analyze multichannel wave transfer
in telecommunication.9 Analysis of the eigenvalue distribu-
tions with and without correlation between wireless channels
is essential in estimating the error-free data rate that can be
transmitted over a multichannel wireless system. This
spurred activities in the microwave wireless community to
verify both theoretically9,10 and experimentally11–13 the use
of RMT.

The experiments we present here are performed with ul-
trasound in a well-defined strongly scattering environment
that is difficult to realize in the wireless experiments per-
formed so far. The ultrasound measurements allow verifica-
tion of the random matrix approach for a range of square and
rectangular array configurations. Ultrasounds are particularly
well suited for recording such a transfer matrix since they
allow a direct pointlike measurement of the field fluctuations
in both amplitude and phase. We study the effects of corre-
lations in multiple-channel systems experimentally by propa-
gating ultrasonic waves from a multielement source to a
multielement detector through a strongly scattering system of
randomly placed vertical rods. The ultrasonic array setup is
described in detail in Ref. 14. Ultrasonic pulses centered
about 3.5 MHz are transmitted from a source array �see Fig.
1�. The position of the source is moved by a computer con-
trolled motor over distances that can be larger than the size
of the receiving array or smaller than the spacing between its
elements. The detector is a fixed 128-transducer array. A se-
lection of signals captured with that array can be recorded
and stored for further processing. The distance between
transducer elements in the array is 0.4 mm and comparable
to the wavelength of 0.42 mm at the center frequency in
water. The distance between transmitter and detector is
�16 cm. The random samples are made of parallel stainless
steel rods with 0.8 mm diameter and placed at random with a
specified surface density.14 The typical mean free path �mf
for the wave propagation in the samples that were used is 1
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cm at 3.5 MHz. This is far from the Ioffe-Regel criterion
kl=1, where corrections to diffusive behavior may be antici-
pated due to wave localization effects.1

The transfer matrix is recorded by scanning the transmit-
ter over a set of m evenly spaced locations and recording n of
the responses received on the fixed array. An example of a
typical signal is given in Fig. 1. A time window, W, is se-
lected in the n�m recorded traces and used to determine the
corresponding element of the transfer matrix at the central
frequency by fast Fourier transform �FFT�. For all results
presented in this Brief Report, the window W is chosen in the
tail of the traces to suppress the early part of the signal that is
mainly due to the direct beam, and only the maximum of the
frequency response is used. An averaging scheme has been
used to enhance the statistics. Since in many of the analyzed
situations m is less than the number of transducers in the
array, selecting different sets of recorded transmitter-detector
signals can emulate measurements for different configura-
tions of disorder with the same source and/or detector spac-
ing characteristics. The eigenvalues of HH† of all these
sampled configurations are used in estimating the eigenvalue
distribution and other statistical properties.

Figure 2 shows our experimental results for different val-
ues of �=n /m in a situation where correlations between el-
ements in the matrix are absent by choosing the distance
between the emitting transducers much larger than the wave-
length �. In these experiments seven uncorrelated transmit-
ters and up to 21 receivers were used. The measured values
for the matrix elements of Hmn were close to Gaussian dis-
tributed with zero mean and finite variance. The plotted ei-
genvalues of HH† are scaled with the variance.

These experimental results can be understood using RMT.
Marčenko and Pastur6,9 derived for an m�n rectangular ran-
dom matrix with uncorrelated identically distributed ele-
ments that the eigenvalue distribution f��E� converges rap-

idly when the size of the matrix goes to infinity with a fixed
ratio �=n /m to

f��E� = �1 − ��+��E� +
��E − a�+�b − E�+

2�E
, �1�

with

a = �1 − �1/2�2, b = �1 + �1/2�2, and z+ = max�0,z� .

The result holds for an arbitrary distribution with zero mean
and equal variance of the elements. Hence, it also holds for
the Gaussian random character expected for multiple scat-
tered waves. Due to the reciprocity principle the role of
transmitters m and receivers n can be interchanged. This im-
plicates that the results for �=m /n also provide the results
for the �=n /m case. The convergence is rapid so that even
for small values of n and m, the eigenvalue distributions are
close to the Marčenko-Pastur law. This is confirmed by our
experimental results in Fig. 2 that clearly show the opening
of a gap near zero eigenvalues and a cutoff at larger values
when m�n.

In a second series of experiments, the spacing d between
elements in the transmitting array were changed from much
less than � to much larger than � for studying the effects of
spatial correlations in the scattered field. Figure 3 shows the
corresponding eigenvalue distributions. The results show a
clear gap near zero eigenvalues for the rectangular uncorre-
lated case �Fig. 3�b� and Fig. 2� that disappears when corre-
lation is introduced. For a square configuration there is al-
ways a density near zero eigenvalue but the distribution
changes when correlation is introduced. The correlation ex-
ists as soon as the spacing between elements is of the order
of the coherence region in the sound field and will certainly
be present when the distance becomes smaller than the wave-
length. The correlation properties in random matrices have
been studied theoretically, in particular, for Gaussian random
elements. In the context of multivariate statistical analysis,
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FIG. 1. The schematic diagram of the ultrasonic multichannel
transmitter-receiver setup. The transmitter array is emulated by
stepping the source through different positions. The receiver array
uses up to 128 elements. The sample is a collection of randomly
placed rods immersed in water. The signal �bottom� shows an ex-
ample of a recorded signal on one of the channels for a short pulsed
excitation and a 4-cm thick sample.
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FIG. 2. Observed eigenvalue distributions �x symbols� for dif-
ferent values of � and scaled to the Marčenko-Pastur law Eq. �1�
�line�. The vertical markers indicate the interval �a,b�, where
f��E��0.

BRIEF REPORTS PHYSICAL REVIEW B 78, 012202 �2008�

012202-2



Wishart5 studied a special class of random matrices
Wm�n ,��=HH† specified by a complex rectangular random
matrix H with m rows and n columns. The random matrix H
has complex Gaussian random elements with zero mean
and equal variance. The correlations between elements in the
transfer matrix are specified by the covariance tensor Rij,i�j�
= �HijHi�j�

� �, with the indices i , i�=1, . . . ,m and j , j�
=1, . . . ,n, and � � the average over all possible realizations of
H. The row- or column-wise sum of elements of R defines an
m�m or n�n covariance square matrix �:

�ij
Col = ��k=1

n HikHjk
� �, �ij

Row = ��k=1
m HkiHkj

� � . �2�

If � is the unit matrix, correlation is absent, and the results
for the Wishart matrix follow the Marčenko-Pastur law Eq.
�1�. The prediction of the resulting eigenvalue distribution of
Wm�n ,�� requires knowledge of the eigenvalues of the cor-
relation matrix �. With the ordered eigenvalues a1�a2
� ¯ �0 of �, the joined probability density function �PDF�
for the eigenvalues �1 , . . . ,�m of Wm�n ,�� can be calculated,
as well as the marginal PDF of an eigenvalue �. The mar-

ginal PDF of a Wishart matrix Wm�n ,�� is9,15

qm,n��� =

	
i=1

m

	
j=1

m

D�i, j��n−m+j−1e−�/ai

m det �n

�=1

m

�n − ��!

k	�

m � 1

a�

−
1

ak
�

, �3�

where D�i , j� is the �i , j�th cofactor of the matrix described
by

D�k =
�n − m + k − 1�!

a�
−n+m−k .

The denominator in Eq. �3� shows that the distribution tends
to be strongly varying for situations where the eigenvalues of
� are almost degenerate.

The column- and row-wise covariance matrices � for the
system are plotted in Fig. 3 for a square and a rectangular
transmitter array geometry. That there is correlation between
elements is obvious from the nonzero off-diagonal elements
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FIG. 3. The observed eigenvalue distribution and the column- and row-wise covariance matrices � for different array geometries and
spacings between elements in the transmitter array. �a� 5�5 with large spacing, �b� 5�10 with large spacing, �c� 5�5 with spacing 	�, and
�d� 5�10 with spacing 	�. The drawn curves are the distributions for a Wishart random matrix �see Eq. �3�� using the observed covariance
matrix �row. The dashed line is the Marčenko-Pastur law Eq. �1�
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in Figs. 3�c� and 3�d�, and the correlation vanishes when the
distance between the elements becomes larger �Figs. 3�c� and
3�d��. The predicted distributions for Wishart matrices
W5�5,�� and W5�10,�� with the covariance matrices ob-
served in the experiment are plotted with a full line, while
the uncorrelated Marčenko-Pastur result is plotted with a
dashed line. In the experiment the covariance between re-
ceiver �or transmitter� elements is determined by the multiple
scattered waves from the source locations. Using a covari-
ance that mimics the spatial correlation of a fully developed
speckle pattern, �ij =J0��i− j� /
� with the correlation length

=0.7 and J0, the zero-order Bessel function fits the behav-
ior for the row-wise covariance displayed in Fig. 3. In all
other cases 
�0. With the relatively small number of 5000
configurations realized in the experiment, a good estimate of
the random matrix elements and their correlations is not con-
verged yet and is still fluctuating strongly. The associated
scatter does not allow a detailed comparison of the experi-
mentally obtained distributions and the theoretical distribu-
tions expected from Eq. �1� or Eq. �3�. However, from the
data we can conclude that the observed distributions follow
the correlated results more closely, in particular, near the
small eigenvalues.

Our results are of interest in the context of multiple input
multiple output �MIMO� communication through disordered
media, where the key element is the ability of the communi-
cation system to exploit independent channels of
propagation.16,17 For example, for radio signals multiple
paths arise because of scattering and multiple reverberation
off the buildings or indoors; similar multipath phenomena
are also frequently encountered in underwater acoustics. On
a first approximation, the more heterogeneous and scattering
the medium is, the more degrees of freedom there are to
communicate through it, and it becomes then advantageous
to use several transmitters and receivers. However, the num-
ber of independent channels can be drastically reduced if

some scattering events induce correlations and especially
spatial correlations as demonstrated in field trials with wire-
less microwave communication.11–13 Also restrictions in the
form of conduits and keyholes impose correlations that in-
fluence the eigenvalue spectrum of HH†.18,19

The estimate of the maximum attainable transfer rate that
can be supported without any errors of transmission uses a
multichannel extension of the Shannon capacity.20,21 At the
heart of the analysis is the transfer matrix H and the distri-
bution of eigenvalues of HH†. In the case that the channel
strength is unknown to the transmitter, the “ergodic capacity”
of the MIMO channel is given by C=	i=1

m log2�1+Es /
nN0Ei�, with Ei the eigenvalues of HH†, ES the total average
transmitted power, and N0 the noise power at each receiver.
Using the eigenvalue distribution for a characteristic en-
semble of realizations of H, an estimate of the average and
the fluctuations of the transfer capacity for the available
signal-to-noise ratio at the receivers can be made. As dem-
onstrated in Fig. 3, the correlation between channels in-
creases the probability of a low eigenvalue, and the MIMO
capacity can be significantly reduced. For example, the mean
of the eigenvalue distributions for the 5�10 array configu-
ration with correlations at the transmitter site �Fig. 3�d�� is a
factor �2.1 smaller than the mean for the uncorrelated case
�Fig. 3�b��. It is also interesting to point out that using more
transmitters than receivers �or vice versa� can increase the
capacity. At best the number of independent channels is
given by min�n ,m�, but the probability of low eigenvalues is
decreased in the case of rectangular matrices: the weighting
of the signal-to-noise ratios at the receivers is more favor-
able.
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